Usando telescopi dell’ESO (European Southern Observatory) e di altre organizzazioni in tutto il mondo, gli astronomi hanno individuato una rara esplosione di luce proveniente da una stella che viene lacerata da un buco nero supermassiccio. Il fenomeno, noto come evento di distruzione mareale, è l’esplosione più vicina di questo tipo mai registrata finora: si trova a poco più di 215 milioni di anni luce dalla Terra, ed è stato studiato con dettagli senza precedenti. La ricerca è stata pubblicata oggi dalla rivista Monthly Notice of the Royal Astronomical Society, riporta un comunicato stampa dell’ESO.
“L’idea di un buco nero che ‘risucchia’ una stella vicina suona come fantascienza. Ma questo è esattamente ciò che accade in un evento di distruzione mareale“, afferma Matt Nicholl, docente e assegnista della Royal Astronomical Society presso l’Università di Birmingham, nel Regno Unito, e autore principale del nuovo studio. Ma questi eventi di distruzione mareale, in cui una stella sperimenta la cosiddetta spaghettificazione mentre viene risucchiata da un buco nero, sono rari e non sempre facili da studiare. Il gruppo di ricercatori ha puntato il VLT (Very Large Telescope) dell’ESO e l’NTT (New Technology Telescope) dell’ESO verso un nuovo lampo di luce avvenuto lo scorso anno vicino a un buco nero supermassiccio, per indagare in dettaglio cosa succede quando una stella viene divorata da tale un mostro.
Gli astronomi sanno cosa dovrebbe accadere in teoria. “Quando una stella sfortunata si avvicina troppo a un buco nero supermassiccio al centro di una galassia, l’estrema attrazione gravitazionale del buco nero distrugge la stella in sottili flussi di materiale“, spiega l’autore dello studio Thomas Wevers, assegnista dell’ESO a Santiago, Cile, e che lavorava all’Institute of Astronomy, Università di Cambridge, Regno Unito, quando ha condotto il lavoro. Mentre alcuni dei sottili filamenti di materiale stellare cadono nel buco nero durante questo processo di spaghettificazione, viene rilasciato un brillante bagliore di energia, che gli astronomi possono rilevare.
Anche se potente e luminoso, finora gli astronomi hanno avuto difficoltà a indagare su questa esplosione di luce, che è spesso oscurata da una cortina di polvere e detriti. Solo ora gli astronomi sono riusciti a far luce sull’origine di questa cortina.
“Abbiamo scoperto che, quando un buco nero divora una stella, può lanciare una potente esplosione di materiale verso l’esterno che ostruisce la nostra vista“, spiega Samantha Oates, anche lei all’Università di Birmingham. Ciò accade perché l’energia rilasciata quando il buco nero mangia materiale stellare spinge i detriti della stella verso l’esterno.
La scoperta è stata possibile perché l’evento di distruzione mareale studiato dal team, AT2019qiz, è stato trovato poco tempo dopo che la stella era stata squarciata. “Poiché l’abbiamo individuato in anticipo, abbiamo potuto effettivamente vedere la cortina di polvere e detriti che si alzava mentre il buco nero lanciava un potente deflusso di materiale con velocità fino a 10.000 km/s“, afferma Kate Alexander, Einstein Fellow della NASA a Northwestern Università negli Stati Uniti. “Questa singolare ‘sbirciatina dietro le quinte’ ha fornito la prima opportunità di individuare l’origine del materiale oscurante e di seguire in tempo reale come avvolge il buco nero”.
Il gruppo ha effettuato osservazioni di AT2019qiz, situata in una galassia a spirale nella costellazione di Eridanus, per un periodo di 6 mesi, mentre il bagliore cresceva di luminosità e poi svaniva. “Diverse rilevazioni del cielo hanno rilevato l’emissione del nuovo evento di distruzione mareale molto rapidamente dopo che la stella è stata squarciata“, afferma Wevers. “Abbiamo immediatamente puntato una suite di telescopi terrestri e spaziali in quella direzione per vedere come veniva prodotta la luce“.
Molteplici osservazioni dell’evento sono state effettuate nei mesi successivi con strutture che includevano X-shooter e EFOSC2, potenti strumenti sul VLT dell’ESO e sull’NTT dell’ESO, che si trovano in Cile. Le rapide ed estese osservazioni in ultravioletti, ottici, raggi X e banda radio hanno rivelato, per la prima volta, una connessione diretta tra il materiale che fuoriesce dalla stella e il bagliore luminoso emesso mentre viene divorata dal buco nero. “Le osservazioni hanno mostrato che la stella aveva all’incirca la stessa massa del nostro Sole e che ne ha perso circa la metà a causa del mostruoso buco nero, che è oltre un milione di volte più massiccio“, afferma Nicholl, che è anche un ricercatore in visita presso l’Università di Edimburgo.
La ricerca ci aiuta a comprendere meglio i buchi neri supermassicci e come si comporta la materia negli ambienti di gravità estrema che li circondano. Il team afferma che AT2019qiz potrebbe persino agire come una “stele di Rosetta” per interpretare le future osservazioni degli eventi di distruzione mareale. L’ELT (Extremely Large Telescope) dell’ESO, la cui entrata in funzione è prevista per questo decennio, consentirà ai ricercatori di rilevare eventi di distruzione mareale sempre più deboli e in rapida evoluzione, per risolvere ulteriori misteri della fisica dei buchi neri.
Ulteriori Informazioni
Questo risultato è stato presentato nell’articolo “An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz” pubblicato dalla rivista Monthly Notices of the Royal Astronomical Society (doi: 10.1093/mnras/staa2824).
L’equipe è composta da M. Nicholl (Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, UK [Birmingham] and Institute for Astronomy, University of Edinburgh, Royal Observatory, UK [IfA]), T. Wevers (Institute of Astronomy, University of Cambridge, UK), S. R. Oates (Birmingham), K. D. Alexander (Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, USA [Northwestern]), G. Leloudas (DTU Space, National Space Institute, Technical University of Denmark, Denmark [DTU]), F. Onori (Istituto di Astrofisica e Planetologia Spaziali (INAF), Roma, Italy), A. Jerkstrand (Max-Planck-Institut für Astrophysik, Garching, Germany and Department of Astronomy, Stockholm University, Sweden [Stockholm]), S. Gomez (Center for Astrophysics | Harvard & Smithsonian, Cambridge, USA [CfA]), S. Campana (INAF–Osservatorio Astronomico di Brera, Italy), I. Arcavi (The School of Physics and Astronomy, Tel Aviv University, Israel and CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada), P. Charalampopoulos (DTU), M. Gromadzki (Astronomical Observatory, University of Warsaw, Poland [Warsaw]), N. Ihanec (Warsaw), P. G. Jonker (Department of Astrophysics/IMAPP, Radboud University, the Netherlands [Radboud] and SRON, Netherlands Institute for Space Research, the Netherlands [SRON]), A. Lawrence (IfA), I. Mandel (Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Australia and The ARC Center of Excellence for Gravitational Wave Discovery – OzGrav, Australia and Birmingham), S. Schulze (Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Israel [Weizmann]) P. Short (IfA), J. Burke (Las Cumbres Observatory, Goleta, USA [LCO] and Department of Physics, University of California, Santa Barbara, USA [UCSB]), C. McCully (LCO and UCSB) D. Hiramatsu (LCO and UCSB), D. A. Howell (LCO and UCSB), C. Pellegrino (LCO and UCSB), H. Abbot (The Research School of Astronomy and Astrophysics, Australian National University, Australia [ANU]), J. P. Anderson (European Southern Observatory, Santiago, Chile), E. Berger (CfA), P. K. Blanchard (Northwestern), G. Cannizzaro (Radboud and SRON), T.-W. Chen (Stockholm), M. Dennefeld (Institute of Astrophysics Paris (IAP), and Sorbonne University, Paris), L. Galbany (Departamento de Física Teórica y del Cosmos, Universidad de Granada, Spain), S. González-Gaitán (CENTRA-Centro de Astrofísica e Gravitação and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Portugal), G. Hosseinzadeh (CfA), C. Inserra (School of Physics & Astronomy, Cardiff University, UK), I. Irani (Weizmann), P. Kuin (Mullard Space Science Laboratory, University College London, UK), T. Muller-Bravo (School of Physics and Astronomy, University of Southampton, UK), J. Pineda (Departamento de Ciencias Fisicas, Universidad Andrés Bello, Santiago, Chile), N. P. Ross (IfA), R. Roy (The Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, India), S. J. Smartt (Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, UK [QUB]), K. W. Smith (QUB), B. Tucker (ANU), ?. Wyrzykowski (Warsaw), D. R. Young (QUB).
L’ESO (European Southern Observatory, o Osservatorio Australe Europeo) è la principale organizzazione intergovernativa di Astronomia in Europa e di gran lunga l’osservatorio astronomico più produttivo al mondo. È sostenuto da 16 paesi: Austria, Belgio, Danimarca, Finlandia, Francia, Germania, Irlanda, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia, e Svizzera, oltre al paese che ospita l’ESO, il Cile e l’Australia come partner strategico. L’ESO svolge un ambizioso programma che si concentra sulla progettazione, costruzione e gestione di potenti strumenti astronomici da terra che consentano agli astronomi di realizzare importanti scoperte scientifiche. L’ESO ha anche un ruolo di punta nel promuovere e organizzare la cooperazione nella ricerca astronomica. L’ESO gestisce tre siti osservativi unici al mondo in Cile: La Silla, Paranal e Chajnantor. Sul Paranal, l’ESO gestisce il Very Large Telescope, osservatorio astronomico d’avanguardia nella banda visibile e due telescopi per survey. VISTA, il più grande telescopio per survey al mondo, lavora nella banda infrarossa mentre il VST (VLT Survey Telescope) è il più grande telescopio progettato appositamente per produrre survey del cielo in luce visibile. L’ESO è il partner principale di APEX e di ALMA, il più grande progetto astronomico esistente, sulla piana di Chajnantor. E sul Cerro Armazones, vicino al Paranal, l’ESO sta costruendo l’Extremely Large Telescope o ELT (significa Telescopio Estremamente Grande), un telescopio da 39 metri che diventerà “il più grande occhio del mondo rivolto al cielo“.