Utilizzando ALMA (Atacama Large Millimeter/submillimeter Array), alcuni astronomi hanno individuato i segnali di un “punto caldo” in orbita attorno a Sagittarius A*, il buco nero al centro della nostra Galassia. La scoperta ci aiuta a comprendere meglio l’ambiente enigmatico e dinamico del buco nero supermassiccio.
“Pensiamo che quella che stiamo vedendo sia una bolla di gas bollente che sfreccia attorno a Sagittario A* su un’orbita di dimensioni simili a quella del pianeta Mercurio, compiendo un giro completo in circa 70 minuti soltanto. Ciò richiede una velocità strabiliante di circa il 30% della velocità della luce!” afferma Maciek Wielgus del Max Planck Institute for Radio Astronomy di Bonn, in Germania, che ha guidato lo studio pubblicato oggi su Astronomy & Astrophysics.
Le osservazioni sono state effettuate con ALMA nelle Ande cilene — un radiotelescopio in comproprietà con l’ESO (European Southern Observatory) — durante una campagna della collaborazione Event Horizon Telescope (EHT) per catturare l’immagine di buchi neri. Nell’aprile 2017 l’EHT ha collegato insieme otto radiotelescopi in tutto il mondo, tra cui ALMA, ottenendo la prima immagine in assoluto di Sagittarius A*, pubblicata recentemente. Per calibrare i dati EHT, Wielgus e colleghi, tutti membri della EHT Collaboration, hanno utilizzato i dati ALMA registrati contemporaneamente alle osservazioni EHT di Sagittario A*. Con sorpresa dell’equipe, le misure di ALMA contenevano ulteriori indizi sulla natura del buco nero.
Per caso, alcune delle osservazioni erano state fatte poco dopo che un’esplosione o un bagliore di energia nei raggi X, individuata dal telescopio Chandra della NASA, era stata emessa dal centro della nostra galassia. Si pensa che questo tipo di bagliori, già osservati in precedenza con telescopi a raggi X o infrarossi, siano associati ai cosiddetti “punti caldi”, bolle di gas caldo che orbitano molto velocemente e vicina al buco nero.
“Ciò che è veramente nuovo e interessante è che tali bagliori erano finora chiaramente presenti solo nelle osservazioni a raggi X e infrarossi di Sagittario A*. Qui vediamo per la prima volta un’indicazione molto forte che i punti caldi in orbita sono presenti anche nelle osservazioni radio“, afferma Wielgus, che è affiliato anche al Nicolaus Copernicus Astronomical Centre, in Polonia, e alla Black Hole Initiative dell’Università di Harvard, negli Stati Uniti.
“Forse questi punti caldi rilevati alle lunghezze d’onda dell’infrarosso sono una manifestazione dello stesso fenomeno fisico: quando i punti caldi che emettono infrarossi si raffreddano, diventano visibili a lunghezze d’onda più lunghe, come quelle osservate da ALMA e dall’EHT“, aggiunge Jesse Vos, studente di dottorato presso la Radboud University, nei Paesi Bassi, e coinvolto in questo studio.
Per molto tempo si è pensato che i bagliori provenissero da interazioni magnetiche nel gas molto caldo in orbita molto vicino a Sagittario A* e le nuove scoperte danno supporto a questa idea. “Ora troviamo forti prove dell’origine magnetica di questi bagliori e le nostre osservazioni ci danno un indizio sulla geometria del processo. I nuovi dati sono molto utili per costruire un’interpretazione teorica di questi eventi“, afferma la coautrice Monika Mościbrodzka della Radboud University.
ALMA consente agli astronomi di studiare l’emissione radio polarizzata di Sagittario A*, che può essere utilizzata per misurare il campo magnetico del buco nero. L’equipe ha utilizzato queste osservazioni insieme a modelli teorici per saperne di più sulla formazione del punto caldo e sull’ambiente in cui è immerso, compreso il campo magnetico attorno a Sagittario A*. La ricerca fornisce vincoli sulla forma di questo campo magnetico più forti rispetto alle osservazioni precedenti, aiutando gli astronomi a scoprire la natura del nostro buco nero e dei suoi dintorni.
Le osservazioni confermano alcune delle scoperte precedenti fatte dallo strumento GRAVITY al VLT (Very Large Telescope) dell’ESO, che osserva nell’infrarosso. I dati di GRAVITY e ALMA suggeriscono entrambi che il bagliore ha origine in un ammasso di gas che vortica intorno al buco nero a circa il 30% della velocità della luce in senso orario nel cielo, con l’orbita del punto caldo vista dall’alto.
“In futuro dovremmo essere in grado di tracciare i punti caldi a varie frequenze utilizzando osservazioni coordinate a più lunghezze d’onda sia con GRAVITY che con ALMA: il successo di tale impresa sarebbe una vera pietra miliare per la nostra comprensione della fisica dei brillamenti nel centro galattico“, dice Ivan Marti-Vidal dell’Università di Valencia in Spagna, coautore dello studio.
L’equipe spera anche di poter osservare direttamente i grumi di gas orbitanti con l’EHT, per sondare sempre più da vicino il buco nero e comprenderlo meglio. “Speriamo che un giorno saremo a nostro agio nel dire che ‘sappiamo’ cosa sta succedendo in Sagittario A*“, conclude Wielgus.